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LY 0. Introduction

h{\ Many problems in continuum mechanics involve an incompressi-
( bility condition, usually in the form of a divergence constraint.
e The numerical discretization of such a constraint presents some
interesting problems with regard to stability. As an important

example we consider the two-dimensional Stokes equations

-AU + VP = F inQQﬂEz,

&Q{s\:)

A

(1)
V'g=0 in Q,
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with appropriate boundary conditions on 38Q. This has the
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standard weak formulation
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Find Ue ¥ ¢ (H'(2)1?2 and P e ¥ ¢ L?(0) such that
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e P

'

(2) a(U,v) + b(v,P) = (F,v) V vevy

b(U,q) e] Vge ¥.
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and (F,v) denotes the usual [L2(Q)]2 inner product. The tensor
is th tric derivative =+(2 9 Th For
eij(g) s e symmetric derivative i[ax1VJ + axJv1 . e spacesb1~——~iif£

200 ¥ and ¥ depend on the boundary conditions. For no-slip 4 O

b boundary conditions: ¥ = (#1(@)1% ana ¥ = L?(@) n {I q= 0}' ‘f??

L"fl Q By

for stress—-free boundary conditions: ¥ = the orthogonal Dx;;za;;&v
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complement of (£,,(v) = 0} in (6t @)1% ana v = t?(@). a

natural discretization of (2) consists in choosing finite

dimensional spaces VN = 4 VN ¢ ¥ and determining

U, v and P, ¥ such that

=N N N N
(3) a(Uy.v) + b(v,Py) = (E,¥) V vevy,
b(Uy.q) =0 V ge v,

The main obstacle in connection with (3) 1is to find spaces YN
and VN so that the discretization is stable and at the same time
has good approximation properties. A reasonable requirement
concerning stability seems to be

(¢) g - Ol . + P =Pl , s C[min g - vl , + min (P - ql ]
N2 N' 2 ey ! = L2

with C independent of the dimension variable N. It is well

known that the Babuska-Brezzi condition

[vevaqex
(5) min max —S— s c > 0,

TH\O) vty i gl

with ¢ independent of N, 1is sufficient to gquarantee (4) (cf.
(2], [7)). If the pressure spaces VN are chosen equal to V-V
then (5) is equivalent to the requirement that the divergence

N'

operator
Ve : ¥ — Y
" N N

has corresponding right inverses

-1
(v )N : VN — VN,

that are uniformly bounded in B(LZ;HI). In this case (5) is both

I R R L Ry ) n u‘,-v\o—- - 'Q“.MF-"-\)"-'I‘( nam Y ;"N.- (YN YRR “. WM LN 2 ; G » ! “n .
P . , 2O LT T
A i A ARt R ety h .o’l,:' NdAR hh!’l..’h‘n XN !'n'!'n‘!h& \A




L
ARRR]

.
a

o
F I A )

]0

- _':_{

-
DL
T

x
z

BE———
'.’-'5-"‘..';&}

RALBESNNEE )

"

{'r-’_

® 2.y

aa @

AAAAAS

o -
KEFARALAL PR

o

x

&

"
[
¢

. ‘ . o o oy ‘ > B A A ) »
:'?:.‘!-.'!'-'!:3'!::'!:'.‘!'.:'.& ~'='J| & . .ﬁ“.:t‘!‘nl‘!'o‘s' -’:‘::!‘!..' .,.\_-,’ ¢ y -l'l.:".!'z!:'l.o (4

a necessary and sufficient condition that the guasi-optimality

egtimate

hU - Uil 1 5 C min U - v

1
H geYN

H

holds for arbitrary admissible force F (cf. [13]).

The most natural low degree finite element spaces often fail
to satisfy the Babuska-Brezzi condition, except on very special
triangulations. A remedy is to appropriately enlarge the velocity
space or to deplete the pressure space; such approaches are
analyzed for continuous piecewise linear (bilinear) velocities
with piecewise constant pressures in [6] and [11] respectively.
For continuous piecewise quadratic velocities one has the well
known Taylor-Hood element, with continuous piecewise linear
pressures (for the analysis leading to (5), see [4] and [14]).
Enlarging the velocity space or depleting the pressure space is
also in general necessary for cubic velocities and quadratic
pressures (cf. [13]).

For continuous pilecewise polynomial velocitlies of total
degree < p, p > 4, the situation is quite different. For an
arbitrary triangulation the range of the divergence operator
acting on the velocity space has a very simple characterization --
it consists of all piecewise polynomials of total degree < p - 1,
except for a certain constraint at so-called singular vertices
(cf. [12])). Furthermore, for fixed p z 4, the divergence operator
possesses maximal right inverses, the norms of which are bounded
independently of the mesh size h. To paraphrase: the condition

(85) is satisfied for such velocities if the pressure space, VN'
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is chosen to be V-YN. Using the analysis in (15] we are able to
prove that the same right inverses have B(Lz;Hl) norms, which
are bounded by some power of p, for fixed h. These results

(p > 4) are valid also for piecewise polynomial spaces with a
homogeneous Dirichlet condition on J8Q (assuming, of course, Q
is polygonal).

In this note we show with a few examples, theoretical as well
as computational, that it is not in general possible to find
maximal right inverses for the divergence operator, acting on
entire polynomials of degree < p, the norms of which are bounded
in B(Lz;Hl), uniformly in p. We discuss both spaces of total
and separate degree < p, as well as spaces with and without
boundary conditions.

The lack of uniformly bounded right inverses for the discrete
case is somewhat surprising when compared to the continuous case:

-1

it is easy to see that there exists a right inverse (V-) which

s+1, 2 s+1, 2

8 = v.(8®"")° boundedly into (H°'")°, V s > 0. A

maps H
similar result holds with homogeneous Dirichlet boundary
conditions, even for non-smooth (polygonal) domains Q (cf. [1]).
Methods that use high degree polynomials to approximate the
solution to the Stokes equations are quite common, whether they be

variationally based spectral methods, or collocation based pseudo-

spectral methods (cf. [10]). Another possibility is the so-called
p-version of the finite element method (cf. [3]): it uses a rather
coarse mesh (triangulation or lattice) and achieves convergence by
including, in a variational formulation, piecewise polynomials of

high degree relative to this mesh. Even though the Babuska-Brezzi

?,
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35 condition may only be satisfied with a constant approaching zero as
)

h{ some negative power of p, these methods seem to have (nearly)

!' optimal convergence rates as far as the velocity is concerned. We
l"‘

K briefly return to an explanation of this (at least for variational
‘¥

:3 methods) towards the very end of this paper. In the special case
L)

» of periodic boundary conditions it is normal to consider spectral
LA

;3 or pseudospectral methods based on trigonometric polynomials instead
O

ﬂﬁ of polynomials. The resulting methods are much more likely to be
gﬂ uniformly divergence stable (see, e.g., (8]), however, they are

34 restricted in their applicability due to the boundary conditions.
5,

:‘: To complete the introduction, let us give an interpretation
d of the constant

k-

T Vev q dx

j; min max — = Hyo

X quN\{O} !€7N i wif 1HCIII 2
L H L

B

L in terms of the associated matrices, when ¥ _ = V-¥ . In order to

N N

do so, we first need to specify our choice of norm on [H1]2: of

-

R SRR

the many equivalent norms we take

2 1/2
3 2 2
vl - [Z | |3—x—ig| ax + |[ v ax| ] :
i=1 0 0O

LA .‘}GG

be a basis for

M
be a basis for VN and let (wk}k=1

)M N
ke’ k=1, 4£=1"'

ANTRN

LY

v, =V.¥ . . The matrices A = {(a B = (b and

ke k=1,e=1

e}
-4
=

"?‘
o
"

)

are defined by

-

® ('fl '.!-\"l{(((,(.‘,d. ey 't‘.'

(6.a) V~q_)e = Z ake wk, 1 < £ < N,

- e

Es

-
g e

- -
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ot ) 3
ok (6.b) bke'zJéx—lfk'a?c,‘ﬁedi"J‘ﬂkdf'J"—’fdf'
3:“: i1=1 Q@ Q Q

{ 1 s k,€s N, and

::}: (6.c) Cre = ( PP dx, 1 s k,€ s M.
e Y Q

) A 1is the discrete representation of the divergence operator and
e (B+,+) and (C-,:) represent the guadratic forms Hg”2 and

W H !
5

‘ Hq”22 respectively.
' L

U With these definitions it is easy to see that Hy is the
P, smallest singular value of the N x M matrix B—l/zATCI/z, and
+ I\ \

. 4 this in turn is the square root of the smallest eigenvalue of the

o positive definite symmetric M x M matrix
S0 (7) p = c!/2a871a"c1/2,
o

N For any q € WN let (V’);lq e YN denote the element of minimal

4

’?@ Hl—norm that has q for its divergence. By a "worst possible

N pressure" (as far as divergence stability is concerned) we mean a
v = " 1] -

A dq € WN, qun 2 1, on which the "minimal norm" right inverse

'y L

e (V')l;1 attains its operator norm. If x € RM denotes a unit

eigenvector for the matrix D, corresponding to the smallest

R eigenvalue, Ny then

M
"'-"" (8) qo = Z(C_l/zg)j 'Pj € wN
=1

.ﬁ& is a worst possible pressure.
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1. Thecretical and Computational results.

Let R denote the square (-1,1)x (-1,1). We first
consider polynomials of separate degree < p, 1.e., the velocity

2

space is (Qp) where i

— m n -
(9) Qp = span(x1x2 : 0 < m,n < p},

and the corresponding pressure space is

(10) V‘(Qp)2 = span{xTxg : 0O<mmns<p, m+n < 2p}.

Note that we use p as a subscript instead of the dimension
variable N = (p + 1)2. As before (V-);1 denotes the right

inverse with minimal Hl(R) norm.

Proposition 1.

The operator (V-);1 : V-(Qp)2 —_ (Qp}z, p 2 1, considered
as an operator from a subspace of L2(R) to a subspace of
(HI(R))2 satisfies
cp s (V) Yy s Cp
P "g(12;n)

with constants O < ¢ and C independent of p.

Before giving a proof of Proposition 1 we make a [ew

observations about orthogonal polynomials. Let en(x) denote the

Legendre polynomial of degree n, with the standard normalization

(11) 4

It 18 not dAifficult to see that

R A R T s R R



FEY Y

(aml”

RPN TINCL

v W g A A

S e

[

Kl‘;.an‘l}

dFP L

Yl X

X

(12) P = 25m Y

-1

1 (x) = ¢ _ (x)), n> 1.

The polynomial Cn may be written as a telescoping series

[n/2]-1
= _ €, n odd
en Z (en-2j fn—2(j+1)) + {l’é, n even '
=0

and consequently

{n/2]-1 x

_ o €,, n odd

en(x) = E (2(n-23-1)+1) I en—ZJ—l + { (é, n even
j:o -1

1 2
From this we conclude that J [dx n] dx is of the order

-1

(n/2)-1
J, i.e.,
j=0
lra 12 2
(13) I [HEﬂJ dx is of the order n°“.
-1
Let qn(x), 0 < n< p denote the polynomials
q,(x) = €£(xX), 0 <mn<p

(14)

X

X) = £
0 = [ 4

-1
{the notation should properly be q;p)' since the definition of
95, depends on p, but we drop the superscript for convenience).
A simple computation gives that the polynomial

X
r(x) =at _, +8 [ €o_1r P22,
-1
8
R A o o AP0 AT T G NI
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satisfies

B 2 2 1 2 2

- 2| a B 2 < a I

{ 5[2p+1 * 3| * J (r(x))" dx < 60— + 2
(2p+1)(2p-1) 1 (2p-3)(2p-1)

N Since {en}ﬁ;i U {(p_l) are mutually orthogonal in L2, and

X
;$3 since they are also orthogonal to ep—z and J €p_1, it follows
-1

K™, that

£
.

1, p 2
J' [Zanqn(x)} dx 1is equivalent to

n=0

«re
,

1)

l" .l
[
s

-1

"

(15)

-
'-

p "
l"‘ 'n’. »
. e

p-1
:E: ai(n+1)_1 + a;(p+1)—3, with constants

n=0

r ) "‘ '
WAL Oy

W oAy
SN

-

that are independent of p.

It is convenient to work with

EEATNp
I’l

LA
5
PR

{qm(xl)qn(xz) : 0s m,n < p, m+n < 2p}

Oz

as a basis for V-(Qp)z. Based on (15) we get that if

~

PR

&
\}'\
0 2
o q-= z Andn (%419, (%,)
;‘ m,n=0
. m+n<2p
s
SN
> then
‘G 2
)~: I (g)"dx is equivalent to
.:h 0
= (16)
b 2 -1 -1 2 2 ~1_-3
W +(a + .
% Y tag e e T+ Y (a0 Bra ) ®) men) T
o m<p m<p
o~ n<p
@
':} with constants that are independent of p.
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o
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We are now ready for the proof of proposition 1:

Given q € V-(Qp)2 we have

p
q = z Anndn (%149, (x,)
m,n=0
m+n<2p
for some set of coefficients {amn}. Define
1 X4 Xy ]
Z amn“ qm]qn(x2) + ZampU qm]qp(xz)
n<m<p -1 m<p -1
E =
X, X3
z amn qm(xl)I qn * Zapnqp(xl) J qn
m< n<p -1 n<p -1
\. J

It is clear that u € (Qp)2, with Veu = q. It remains to

estimate the Hl-norm of u. Using (16) we immediately get that

8 a
u + u s Clla ;
3% 1"L2(R) 3% 2HL2(R) l MLz(R)

also
a

[ 5+ 4,

103 }, for p > 2,
- 3a
R Cco

and therefore

I 1 u | =< clal :
IR L2 (R)

Concerning g;;“1=

o
2 L°(R)
X4 4 X1 2
(17) = " Zamn[f ‘m] [E;Een]“‘z) +Zamp[j (m]ep‘l(x"’)"r.z(n)
n<m<p -1 m<p -1
m-1 2
-3 [s |
B £
< CZ(m+1) "Zamn[a_fcn] + amP P"1"L2(_1,1),
m<p n=0

10
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f..
o
;$~ because of the identities (11) and (12) and the
o
"
b Lz-orthogonality of the Legendre polynomials. From (17) we get
X )
(], by means of the triangle inequality, Schwarz inequality, and the
|;'g'
e
estimate 13
3 $ (13)
3 m-1 m-1
) 2] -3 2 2 2_-1
. R IEES WSty PYCTIESD WL )
jﬁk L°(R) m<p n=0 n=Q

X

the right hand side of which is bounded by

_—

~ 2 :E: 2 -3 _-1

\;-‘\-' C[ Z(amn) + (amp) (m+1) “p .

o~ n<m<p m<p
.\“-'\
N Using the above estimate in combination with (16) we get

®
W
Pt a 2 2 2
0 35w, s cp” Jlall :
73 X2 172 (g ?(r)
u‘\::
(‘ a8 2
The same estimate holds for |z—u,f| In summary we have

’ \

ﬂﬁ‘ thus established
LS

N u

ufl < ¢p [lqf '

f;“ ! (R) L?(R)
fﬁﬁ and since (V-)p-lq is the field of minimal Hl-norm it follows
Y that .

" vy |l s Cp.

® P "g(L2;nt)
\:§.
:ﬁm To verify the second inequality of this proposition, consider
!
Lo *
! q = rix e (x,)

®
{y{ for some fixed polynomial r (of degree < p - 1). As a basis
,;
o for we choose
WY %
\y:

® .

- {qm(xl)qn(xz) : 0 < m,n < p}.

-l‘::|

:

e 11

v

®

iy

e AV RO A = e LN AN A,

»EA \*r- P‘v(.r - —?‘}.-‘u.k'-.’\v . ) v\*‘v *\ “‘l' “&
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) For an arbitrary u € (Qp)2 there exist coefficients

L)
MQ (an) such that

{ p

1 m,n=0

o P
t ) U T Z B mnm (%179, (X5) -

m,n=0

e
[}

*
= =—u, + =—u, = q , then we must necessarily

X 1
o d
e z: amp[a'}—cqm}(xl) J qpep dx

¥
R =0 -1

1
_ . - 2

- I Vou(x,.x,)e (x,)dx, = r(x,) J £ax.
- -1 -1

Due to (12) and (14) it follows that

-

P

g:_c[zampqm] = (2p - 1)r,

m=0

o S o RS

LN

o
) )
[y}

. E

LA R

&

and therefore

-

e )
S A

Y

n<p ms<p -1

. -
> R X
’.l.l'.r l’al.

After differentiation with respect to X,

L4

A

Xy

. '.J'

VAT N S

[EE nJ 2. nn

n<p ms p -1

L
P 4

PN

from which it now follows (by orthogonality) that

.l

; X
ALg

Ay
‘e

]

12

35.

-
>

KK O ,o A" ',.n'..t’.,n'. T8 e u'g'n':'o'.'l'.‘s e 'u'..l'. ..o'.'l' 'A"‘l’ ‘t'.fc':&'m' SN t""'-!‘ "' Wiy 'l'o'l‘

{amn) and

have

{18) u, = an(xz) Zamn m(x ) + 95 (x, )(2p~ 1)(] r + c).

(d N !
(X) q(X)+fp 1(x2)(2p 1)(J r + c),

h 4
o.‘ h“l“ X

l|lq'l

DO
t.?‘ A..

WIS N M)




1

X
R (19) J By )ax = 2c2e-1) [ (['r + c)%ax
-1

{ R -1

;ﬁﬁ 2(2p-1) “ [jr _ % Iljxr dx"22

-1-1 L"(-1,1)

v

':) At the same time

and so we have proven that for any u € Qp with V-.u = g one
s has

*
Sy fuff , zeplall,
) H™(R) L™(R)
S (for fixed r). This verifies the lower bound on the norm of
-1

1 v
1 Vg

We now consider polynomials of total degree < p. Without

2L L

SR

boundary conditions the velocity space is (?p)z, where

A E I TR

i _ m_n
D) P, = span{x;x, : m +n < p},
b
,Eﬁ and the corresponding pressure space is V-(Pp)2 = Pp—l' First
Xqﬁ
’ Q some computational results for the domain R = (-1,1) x (-1,1).
o
o As a basis for Pp in these computations we pick products of
v
f;ﬁ integrals of Legendre polynomials (supplemented by the constant
g
‘gﬂ function):
o
m; X4 X2
\ Q 1, J e, J e 0 < m,n < p-1,

3 m n
": (20) -1 -1
n:}: x4 x2
:. I em I en 0 < m,n and m+n < p-2.

o -1 -1
\':".
R
R o
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As a basis for V- (? )2 =P we pick
P p-1

(21) €.(x )€ (x,) O<mmn and m+ n s p-1.

The top plot in figure 1 shows the smallest eigenvalue of the
matrix D (as defined in (7)) for p varying between 1 and
18. The eigenvalues were computed using two EISPACK subroutines:
first the matrix was transformed (by orthogonal similarity
transformations) into a tridiagonal matrix using subroutine TRED2,
then the eigenvalues were computed by the QL method (an obvious
variant of the QR method) using subroutine TQL2. The 8(L2;H1)
norm of the "minimal norm” right inverse is the reciprocal square
root of the smallest eigenvalue. The numbers do not clearly
indicate whether these right inverses are bounded independently of
p ——- if anything they seem to indicate that the norms grow as

p — ®, but only as a very small power or possibly a logarithm of
p (the corresponding solid line was computed by linear regression
on the last four points, it is proportional to p_0'3975). We
note that by a slight change in the proof of Proposition 1 one can
show that the present right inverses are bounded in B(Lz;Hl) by
Cp. however, that is clearly too conservative. The situation is
more clear cut in the case when homogeneous Dirichlet boundary
conditions are prescribed. The velocity space is then (fp)z.
where

Pp = Pp 0 (v]gq = 0}

and the pressure space is V-(i’p)2 < A simple count of

Pp—l .
dimensions gives that V»(?’p)2 has co-dimension 9 in ?p-l'
p=5. V-(f’p)2 is the common nullspace for the following nine
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linearly independeat functionals: the integral over R, point

v p-2
jﬁ evaluation at each of the corners of O8R and E%J evaluated
{
-; at the center of each side of AR. As a basis for ﬁp we take
‘o
{59
f: the same elements as in (20) except for those in the first line,
L
thd and those corresponding to m = 0 or n = 0 in the second line.
\
%ﬁ Instead of computing the matrices A and C by using a basis for
s 2
b, v-(® ) we use a basis for P 8 { J q = 0}, the same as in
o P p-1 0
( (21) except for the constant function. The only effect of this
J ’.
ii in terms of eigenvalues and eigenvectors is to add 0 as an
2
\; eigenvalue of D with multiplicity 8, p 2 5 (in the case
° p = 4, V-(9°>p)2 only has codimension 8 in P -1 and the
DT
E} corresponding multiplicity of 0O becomes 7). The lower plot in
.)Iﬂ'
Nﬁ figure 1 shows the smallest positive eigenvalue of D for p
L"
( varying between 4 and 18; the eigenvalues were computed as
<.
<
'{. before, using EISPACK. The B(Lz;ﬂl) norm of the "minimal norm"
f right inverse (V-);l- V-(f’p)2 — (f’p)2 is the reciprocal square
. root of the smallest positive eigenvalue. The numbers clearly
i‘
s': indicate that the norms are not bounded uniformly in p. Based on
1%
‘£ these numbers it is reasonable to conjecture that the norms grow
., at least linearly in p and at most as Cpa/2 (the solid line on
Wl -
)] the graph of eigenvalues is proportional to p 2, corresponding
; ; to linear growth of the norms). What is more, we can actually
(o
' prove the lower bound:
"-g
[y
S5
R
3

L Jietiaeoeranl
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Proposition 2.

51'

Let
© b

(Ve) v'(‘;’p)2 -— (ﬁp)z. p 2 4, denote the right

inverse with minimal H1 norm. Considered as an operator from a

subspace of L2(R) to a subspace of (HI(R))2 this satisfies

-1
cp s [[(V-) |l .

P "g(2;ut)
independent of p.

with ¢ > 0,

Proof.

x X3
Let g (xl,xz) = Cl(xl) J Cp_s. It is clear that
-1
*

v.(#_)?2 v g "2
q € ( p) since v = (I 1 j lp_s. 0). On
-1 -1

the other hand, if u € (? )2 is an arbitrary velocity field with

. P
V+-u=gq , then
 m+nsp-2 3
- Xy Xy
Z %mn I cm[ en
m,n=1 -1 -1
E =
m+ns p-2 X X3
2w ]
m,n=1 -1 -1
and
m+n<p-2 X, Xy Xa
Z [amnem(xl) ,[ en + an(,[ tm)en(xz)] N el(xl) ,[ [p-a'
m,n=1 -1 -1 -1
Using (12) and the linear independence of the Legendre polyno-
mials we get
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p-3 L p-¢ .
YN PRI
(22) amj n 5 Pantn(%2) I p-3'
n=1 -1 n=1 -1

since these are the respective coefficients of el(xl). The

identity (22) implies

%p-3 = 1-
and since
s m+ns<p-2 %y
Ix; M1 < Z amn(j “n) n%y)
m,n=1 -1
m+ns<p-2
= 1 _
= Z 2m+1amn[£m+1(x1) em-1(x1)]en(x2"
m,n=1
it follows that
1 1
ad 2 1 2 2 2
(23) lssoal’s, 2 599p-a [ % | %-a
L°(R) Z1 Z1
- 4
9(2p-5) °
A simple computation gives
8 1

*.2
lla |

L2(r) 3 (2p-3)(2p-5)(2p-17) '

and therefore, in light of (23),

2 1 * 2
flulf x = (2p-3)(2p-7) |q || .
#l(r) 8 L2(R)

2 *

Since u is an arbitrary field in (ﬁp) , with VvV « u=gqg,

this gives the desired lower bound on the operator norm.
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A
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3

A

"

<

3

:E? Figures 2 and 3 show contour plots of worst possible pressures,
5§3 in t! - sense defined at the end of the introduction, for p = 7, 8,

!_\' 14 and 15. These pressures are elements of V-(ﬁp)z, and they

:?g have the property that the right inverses (V');lz V-(f’p)2 — (f’p)2
j$§ attain their B(Lz:Hl) norms there. Solid lines in the plots

: ) correspond to positive values, dashed lines correspond to negative

: Q values. On each plot the interval between contour lines is

indicated at the bottom and so is the entire value range of the

”

pressure.
l"\-':
é:i We note several features:
"~ -
;ﬁﬁ (1) There is a marked difference between worst pressures for
.'_4!
ﬂ_ even and odd p. This correlates well with the lowest plot in
l,. ]
,b
:f figure 1, which really seems to consist of two slightly different
PN
M i)
.:j curves, one for even p and one for odd p.
LY
L ; (2) The value range for a worst pressure grows as p in-
sy

creases, and the extreme values are clearly attained on dQ.

S

B

(3) For p odd and sufficiently large there is a local

>

-
-
-
-

checkerboard pattern developing, similar o that found in

connection with some unstable low order elements (see, e.g., [5]

o,
i

for bilinear-constant velocity-pressure approximation).
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‘§f‘ 2. cConclusions and final remarks.
g‘.l
&iﬂ We have shown with a few examples that one cannot in general
(ﬁﬁ construct maximal right inverses for the divergence operator,
’\"‘\
‘;ﬁ whose 8(L2;H1) norms are uniformly bounded as the polynomial
A
-;a degree increases. We do not think that the square domain is

extremely special in this regard, and we believe that similar

- e~

examples can be found on many other polygonal domains.

-
555

We do not, however, claim that it is impossible to find

£

domains for which uniformly bounded maximal right inverses exist.

L4
vy

Indeed one such class of domains (for polynomials of total degree

- s gy

N
n?

.~: < p, with no boundary conditions) are the ellipses:

®
Q0

ol Example 2.1.

fﬁ Let E = {(xl,xz): axf + bxg < 1), 0 < a,b. The Laplace
a Y2 (8 2 s
£ ; operator A: tgiz] + &ﬁqj maps Pp+1 into ?p—l' The space
Y 0
,ﬁﬁ P , on the domain E, s the same as (ax2 + bx2 - 1)? ,
i p+1 1 2 p“‘l

and since A has no nontrivial null vectors with homogeneous

K
O

Dirichlet boundary conditions, it follows that A 1is an

o
o
qé isomorphism from P onto ¥ . The operator
5 p+1 p-1
|
..5 (V-);1 = va~ 1. Po-1 (Pp)2 is a uniformly bounded maximal right
LA s
jpﬁ inverse for the divergence operator on the domain E.
2; [
-"‘.'
1o Where no boundary conditions are involved, unboundedness of
®
:VJ the “minimal norm"” right inverse in spaces of entire polynomials
\I
|,$ (on a sguare, say) immediately leads to unboundedness in spaces of j
ML
J ‘.
; plecewise polynomials relative to a fixed partition (a lattice).
'j: We expect that the "minimal norm" right inverses for truly
o
1 ;{
‘$t 22
4;.;‘
oo

s )
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b A v ‘
®, ‘Q

o
*®
s
jq} piecewise polynomials will inherit some of the (likely) extra
Nl
Vth
ﬁﬁg unboundedness associated with homogeneous boundary conditions.
Eis For example, on a lattice (with more than one rectangle) it would
RN
aﬂ not be surprising, if the right inverses corresponding to spaces
fi: of piecewise polynomials of separate degree < p have B(L2;H1)
-‘\.z
) norms, that grow faster than p.
A
v Lack of divergence stability as evidenced by the fact that
5 the best lower bound in (5) might behave like p-a. a > 0,
surprisingly does not lead to suboptimal order of convergence for
o
J& the velocities, as p — ® (provided we use the divergence of the
\“:ﬂ
ol velocity space as the pressure space). This may be explained by
oy
an interpolation argument, the idea of which originates in [3].
_ﬁi The explanation is particularly simple with stress-free boundary
:g: conditions on a simply connected domain: since gp is a pro-
jection of U we get
~
(24) lu - u| < cllu] .
o P al(a) H(0)
sy
and since the lower bound in (5) is ~ p-a we can also prove
s
R (cf. [13])
e
o
:‘.':: "g = 'gp" 1 s Cp min "g - !" 1 ’
® H™ (Q) v H™(Q)
o
o
e where the minimum is taken over the full space of discrete
.
Y velocities ((Qp)2 or (Pp)z). Standard approximation results
L)
2. yleld
hY
= (25) 9=l s ™l y,, o M=o
% PPut(0) H T (Q)




-
-
-
-

L
te ol

X ®

Ty e ar e

22y

-
P Sy -
555484 'ﬁ} P4

Sk A

b
B

For fixed M we can interpolate a fraction 6 = ; between (24)
and (25) to get
o - oy o Mg L o<k am,
H(Q) H (Q)

By choosing M sufficiently large (M > 25) we conclude that
£

1A

26 Uu-1u C
(26) v - g

1 k,ep

|l
ul(a) Hk+1

(Q)

for any ¢ > 0. Modulo ¢ the estimate (26) represents the

optimal order of convergence for general U in Hk+1(0). More

details are found in [15) and [16]), where the same argument is
used in the context of the equations of elasticity (for a nearly

incompressible material).
N

We do believe that the lack of divergence stability affects
the accuracy of the pressure approximation much more drastically,

and we expect that a certain postprocessing (filtering) of the

-

pressures may be necessary as p — ®.
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